On the Discrete Spectrum of a Family of Differential Operators
نویسندگان
چکیده
A family Aα of differential operators depending on a real parameter α is considered. The problem can be formulated in the language of perturbation theory of quadratic forms. The perturbation is only relatively bounded but not relatively compact with respect to the unperturbed form. The spectral properties of the operator Aα strongly depend on α. In particular, for α < √ 2 the spectrum of Aα below 1/2 is finite, while for α > √ 2 the operator has no eigenvalues at all. We study the asymptotic behaviour of the number of eigenvalues as α ր √ 2. We reduce this problem to the one on the spectral asymptotics for a certain Jacobi matrix.
منابع مشابه
On the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
Double-null operators and the investigation of Birkhoff's theorem on discrete lp spaces
Doubly stochastic matrices play a fundamental role in the theory of majorization. Birkhoff's theorem explains the relation between $ntimes n$ doubly stochastic matrices and permutations. In this paper, we first introduce double-null operators and we will find some important properties of them. Then with the help of double-null operators, we investigate Birkhoff's theorem for descreate $l^p$ sp...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کاملSpectrum and essential spectrum of linear combinations of composition operators on the Hardy space H2
Let -----. For an analytic self-map --- of --- , Let --- be the composition operator with composite map --- so that ----. Let --- be a bounded analytic function on --- . The weighted composition operator --- is defined by --- . Suppose that --- is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملSelf-commutators of composition operators with monomial symbols on the Bergman space
Let $varphi(z)=z^m, z in mathbb{U}$, for some positive integer $m$, and $C_varphi$ be the composition operator on the Bergman space $mathcal{A}^2$ induced by $varphi$. In this article, we completely determine the point spectrum, spectrum, essential spectrum, and essential norm of the operators $C^*_varphi C_varphi, C_varphi C^*_varphi$ as well as self-commutator and anti-self-commutators of $C_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008